<一般逆行列の応用>

右の表がデータです。このデータに対して、xとyの関係を近似する3次の多項式を最小自乗法で求めます。これは、次の方程式で、係数c_i(i=1~4)を求めることです。

$$y \approx c_1 + c_2 x + c_3 x^2 + c_4 x^3$$
 (1)

ステップ1:配列の準備

表の第1行目を列の名前として登録します

x=Data.x 代入定義:表データを配列に代入

y=Data.y

h=index(x) 代入定義:データ数を求める

m=1..h 代入定義

n=1..4

a_{m.n}=0 配列定義:2次元配列の作成

A=create_matrix(a) 代入定義:行列の作成

Y=create_matrix(y)

<u>ata</u>		
	X	У
	0	Ó
	0.1	0.1002
	0.2	0.2013
	0.3	0.3045
	0.4	0.4108
	0.5	0.5211
	0.6	0.5211 0.6367
	0.7	0.7586
	0.8	0.8881
	0.9	1.0265
	1	1.1752

ステップ2:行列の作成

スクリプトを用いて、行列に値を入れます

$$\begin{bmatrix}
 (for i = 1 to h step 1) \\
 (for j = 1 to 4 step 1) \\
 A_{i,j} = x_i^{j-1}
 \end{bmatrix}$$

関数名の無いスクリプトです。 この場合、代入定義を実行します。

注:行列Aは計画行列と呼ばれるものです。

ステップ3:係数ベクトルを計算

式(1)は計画行列Aを用いて、次のように表現できます。

$$Y \approx Ac$$

それゆえ、Aの一般逆行列 A⁺を用いて、c は次のように計算されます。

$$C = \begin{pmatrix} -0.0001434 \\ 1.0045726 \\ -0.0201107 \\ 0.1906954 \end{pmatrix}$$