

計算の簡素化のための仮定

隕石を球形(半径r)とみなす 運動エネルギーはすべて熱に転化される

使われる公式(関数定義)

$$E=\frac{1}{2}mv^2$$
 $m=\frac{4\pi}{3}r^3\rho$
蒸発熱= $10^8 \times 10^6 \times (100+540)$

運動エネルギーの公式

隕石の質量

1億トンの水を0度から蒸発させる熱量

隕石1

密度	$4[t/m^3]$	
速度	20[km/s]	

計算1

	半径	衝突熱量	水の蒸発量	琵琶湖何杯分
単位	[m]	[cal]	[億トン]	275[億トン]
ケース1	20000	1.5300×10^{24}	2.3906×10^{7}	8.6931×10^4
ケース2	15000	6.4548×10^{23}	1.0086×10^{7}	3.6676×10^4
ケース3	10000	1.9125×10^{23}	2.9883×10^{6}	1.0867×10^4

シミュレーション(隕石1,計算1)

計算で使用したカルキングプログラム

関数名:シミュレーション

「シミュレーション(隕石パラメータ, Table) ρ = 隕石パラメータ $_{2,1}$ \mathbf{v} = 隕石パラメータ $_{2,2}$ [(for i = 3 to 5 step 1) \mathbf{r} = Table $_{2,i}$ [m] \mathbf{r} = Table $_{3,i}$ = $\frac{0.2389E}{1[\,\mathrm{cal}]}$ \mathbf{r} = $\frac{Table}_{3,i}$ = $\frac{Table}_{4,i}$ = $\frac{Table}_{4,i}$ = $\frac{Table}_{4,i}$ = $\frac{Table}_{4,i}$ $\frac{Table}_{4,i}$ = $\frac{Table}_{4,i}$ $\frac{Table}_{4,i}$ $\frac{Table}_{4,i}$ $\frac{Table}_{4,i}$