〈多項式展開と無限級数展開〉

プロフェッショナル版限定機能

★多項式展開

拡張数学関数には多項式に展開する関数があります。 関数を入力して、「実行」-「各種の展開」-「多項式展開」で、表示されます。

操作方法

- 1) H₁₂(*x*)= と入力します。
- 2) 「実行」-「各種の展開」-「多項式展開」を選びます。
- 3) 関数の代数計算の形で表示されます。

polynomial_expand($H_{12}(x)$)

 $= 4096x^{12} - 135168x^{10} + 1520640x^8 - 7096320x^6 + 13305600x^4 - 7983360x^2 + 665280x^4 - 7983360x^2 + 665280x^4 - 7983360x^2 + 665280x^4 - 7983360x^4 - 798360x^4 - 7983360x^4 - 798360x^4 - 79860x^4 - 79860x^4$

 $polynomial_expand(L_{10}(t)) = \frac{1}{3628800}t^{10} - \frac{1}{36288}t^9 + \frac{1}{896}t^8 - \frac{1}{42}t^7 + \frac{7}{24}t^6 - \frac{21}{10}t^5 + \frac{35}{4}t^4 - 20t^3 + \frac{45}{2}t^2 - 10t + 1$

polynomial_expand(
$$T_{15}(x)$$
)
=16384 x^{15} -61440 x^{13} +92160 x^{11} -70400 x^{9} +28800 x^{7} -6048 x^{5} +560 x^{3} -15 x

polynomial_expand($U_{14}(s)$) =16384 s^{14} -53248 s^{12} +67584 s^{10} -42240 s^{8} +13440 s^{6} -2016 s^{4} +112 s^{2} -1

★無限級数展開

数学関数の計算式をマクローリン展開(x = 0 におけるテイラー展開)します。 式を入力して、「実行」-「各種の展開」-「無限級数展開」で、表示されます。

操作方法

- 1) sinx+e^x= と入力します。
- 2) 「実行」-「各種の展開」-「多項式展開」を選びます。
- 3) 展開する最高次数の入力になるので、11と入力し、「OK」をクリックします。
- 4) 関数の代数計算の形で表示されます。

$$taylor_expand(sinx+e^{x},11) = 1+2x+\frac{1}{2}x^{2}+\frac{1}{24}x^{4}+\frac{1}{60}x^{5}+\frac{1}{720}x^{6}+\frac{1}{40320}x^{8}+\frac{1}{181440}x^{9}+\frac{1}{3628800}x^{10}$$

展開する変数は デフォルトは x ですが、他の変数について展開したいときは、 プロパティの「式の属性②」の「代数表現」の注目文字で指定します。

 $taylor_expand(cost,11) = 1 - \frac{1}{2}t^2 + \frac{1}{24}t^4 - \frac{1}{720}t^6 + \frac{1}{40320}t^8 - \frac{1}{3628800}t^{10}$

(tを注目文字に指定)

★フーリエ級数展開

操作方法

- フーリエ展開したい式を=記号と一緒に作成します。
 x =
- 2)上記の式を選択して、
 「実行」-「各種の展開」-「フーリエ級数展開」
- 3) 上記の操作によって、展開項数を指定するためのダイアログ画面が出ます。 ここで5にすると以下の展開結果が得られます。

fourier_expand(x,5) = 2sinx-sin(2x) + $\frac{2}{3}$ sin(3x) - $\frac{1}{2}$ sin(4x) + $\frac{2}{5}$ sin(5x)

4)上記の式では展開項数を5にしましたが、式をコピーして、5を10に修正して、「再実行」すると 以下のような結果が得られます。

fourier_expand(x,10) = 2sinx-sin(2x) + $\frac{2}{3}$ sin(3x) - $\frac{1}{2}$ sin(4x) + $\frac{2}{5}$ sin(5x) - $\frac{1}{3}$ sin(6x) + $\frac{2}{7}$ sin(7x) - $\frac{1}{4}$ sin(8x) + $\frac{2}{9}$ sin(9x) - $\frac{1}{5}$ sin(10x)

5)他の計算例

以下の式は、現在分数モードでの代数計算ができないため、式を選択して、「実行」-「各種の展開」 - 「フーリエ級数展開」を行うとエラーになります。

上記の式の「fourier_expand(x, 5)=...」をコピーして、計算式を変更し、プロパティで分数モードの チェックを外し、ご希望の桁数にして再実行してください。

小数モード 8桁

fourier_expand $(\sqrt{x^2+1},7)$ = 1.9448477-0.99740356cosx+0.10786688cos(2x)-0.07608 94cos(3x)+0.035982537cos(4x)-0.02480316cos(5x)+0.016719265cos(6x)-0.01242 7225cos(7x)

小数モード 8桁

 $fourier_expand(e^{-x^2},7) = 0.28209229 + 0.4393962\cos x + 0.20754913\cos(2x) + 0.0594693$ $56\cos(3x) + 0.010329757\cos(4x) + 0.0010923944\cos(5x) + 0.000066826285\cos(6x) + 0.$ $0000050990035\cos(7x)$

なお、次の式は厳密計算できます。 fourier_expand(x²,5)= $\frac{1}{3}\pi^2$ -4cosx+cos(2x)- $\frac{4}{9}$ cos(3x)+ $\frac{1}{4}$ cos(4x)- $\frac{4}{25}$ cos(5x)