<Excelへのリンク機能>

関東地区の気象データ

概要

12か月分の仮想気象データが「マイドキュメント」のサブフォルダにExcelファイルとしてあります。 これをカルキングに自動で取り込み、処理をする過程を示します。 この例でカルキングのエクセルリンク機能の有効さが示されます。 さらに、定型業務パターンをカルキングで実現する典型的な例を示します。 重要な点は、操作をわかりやすくするためのインターフェース表の利用です。 ExcelLinkのような複雑な情報を表の形にまとめ、これを再利用します。 インターフェース表は単なる表ではなく、「実行」される資格を持った表です。 このため「実行」メニューに「インターフェース表」が用意されています。

ステップ1

Excelファイルからカルキングの表への取り込み

(1)Excelインタフェース表ファイルから、テンプレートをコピー して取り込みます。ここでは標準仕様3のstyle3をコピーしま した。2列目の白色セル部分には必要な情報をセットします。 第3列目の備考欄は自由に記述可能です。 また、この欄は削除することも可能です。

folder="C:¥Documents and Settings¥akiyoshi¥My Documents¥excel¥" file1=folder+"関東9月.xls" ← フルパス名の定義

サンプル1					
excel_interface	parameter	備考			
function	style3	関数名			
sheet name	"Sheet1"	アルファベット			
excel top cell	″A1″	先頭セル番地			
excel last cell	″E8″	最終セル番地			
full path name	file1	Excelファイル名			
calking table	関東9月	受け皿テーブル名			
calking top cell	(1,1)	先頭セル番地			
calking last cell	(5,8)	最終セル番地			

サンプルで使用するインターフェース表

湿度(%) 降水量(mm)

(2)受け皿となるカルキングの表(関東9月)をすべて空白 にして準備しておきます。

(マニュアル操作でも、自動でも可能)

(3)インターフェース表の実行(2通りあります)

(a)手動操作

右の「サンプル1」の表を選択して、「実行」メニューの「インターフェース表」をマウスクリック

(b)プログラム操作

command_interface_table(サンプル1) ここでサンプル1は参照されるインターフェース表の名前です。

この操作ではExcelの起動、Excelデータの読み取り、 カルキングの表へのセット、Excelの終了がすべて 自動で行われています。

THO T		
B地点		
C地点		
D地点		
E地点		
F地点		
G地点		

地域気圧(hPa)気温(℃)

インターフェース表の実行により受け皿の表に データがセットされた結果

<u>関東9月</u>

関東9月

ط الله

2 4/1 2 7 4				
地域	気圧(hPa)	気温(℃)	湿度(%)	降水量(mm)
A地点	1016.5	12.3	38.2	265.4
B地点	1012.4	15.5	46.3	299.3
C地点	1012.6	14.9	48.2	293.5
D地点	1024.5	18.2	40.0	278.4
E地点	1014.9	18.2	54.3	304.9
F地点	1025.5	20.0	47.2	262.2
G地点	1014.4	19.9	57.3	287.5

加工データ表の作成

作成する表の情報を右のtable_spec表に セットします。

r1=抽出表作成("気温データ1",9,2,7,50,1700)

r2=create_table(table_spec)

この式の実行で、下の気温データ1の表が 空白状態で作成されます。

気温データ1

A地点	B地点	C地点	D地点	E地点	F地点	G地点
12.3	15.5	14.9	18.2	18.2	20	19.9

気象項目=3 「関東9月」表の3列目

r3=データ書き込み(気象項目,気象データ表)

この式の実行で上の気温データ表1に「関東9月」表から必要なデータが抽出されます。

table_spec

テーブル仕様

作成位置(X)

作成位置(Y)

デフォルト

2

7

50

1700

表の名称 気温データ1

右の抽出表作成関数で

データがセットされます。

行数

列数

ステップ3

加工された表をExcelの3次元棒グラフで描画する

右のインターフェース表に必要なデータをセットします。

- ・functionのdefault1とは標準仕様1のことで、Excel起動、 グラフ化などの一連の作業が定義済みの関数名のこと です。
- ・full path nameは作成されたExcelのブックを保存する ファイル名です。
- ・graphの値は、ExcelのVBAで定義されているものを使用 します。カルキンググラフライブラリで定義されています。

excel_interface	parameter	備考
function	default1	関数名
sheet name	"気温"	アルファベット
excel top cell	″A1″	"A2"
excel last cell	″ G2 ″	設定不要
full path name	file2	保存ファイル名
calking table	気温データ1	カルキングテーブル名
calking top cell	(1,1)	例 1,1
calking last cell	(7,2)	例 4,2
graph	xl3DColumn	グラフ種別

Excelで作成された表を貼り付けたものです。

excel_interface		インタフェース			
function	end	関数名			
sheet name	"気温"	アルファベット			
Excel終了のためのインタフェース表					

file2=folder+	"気温9月	.xls"
avaal interface		ハカフーー

		excel_interface		
		function	and	

抽出表作成(name, m,row,col,x,y) 該当月=9 文字変数="関東"+≪該当月≫+"月" 気象データ表=search_name(文字変数) table_spec_{2,2}=|name| table_spec_{2,3}=row table_spec_{2,4}=col table_spec_{2,5}=x table_spec_{2,6}=y return 1

> データ書き込み(item, M) (for k = 1 to 7 step 1)

気温データ1_{k.2}=M_{item,k+1}

p=≪M_{1,k+1}≫ 気温データ1_{k,1}=|p|

気圧、気温、湿度、降水量の平均値、分散、標準偏差を求める。

関東9月統計処理

	気圧	気温	湿度	降水量
平均	1017.3	17.0	47.4	284.5
分散	30.0	8.2	47.8	270.7
標準偏差	5.1	2.6	6.4	15.2

カルキングでの平均、分散、標準偏差関数は配列を パラメータとします。従って、下記スクリプトでは、 それぞれ配列に対しての代入を含みます。

excel_interface	parameter	備考
function	default1	関数名
sheet name	"気温"	アルファベット
excel top cell	″A1″	"A2"
excel last cell	″E4″	設定不要
full path name	file2	保存ファイル名
calking table	関東9月平均地表	カルキングテーブル名
calking top cell	(1,1)	例 1,1
calking last cell	(5,4)	例 4,2
graph	xl3DColumn	グラフ種別

a={0,0,0,0,0,0,0}

```
 \begin{bmatrix} (\text{ for } k = 2 \text{ to } 5 \text{ step } 1 ) \\ [mu] \begin{bmatrix} (\text{ for } k = 2 \text{ to } 5 \text{ step } 1 ) \\ [mu] \begin{bmatrix} (\text{ for } k = 2 \text{ to } 5 \text{ step } 1 ) \\ [mu] \begin{bmatrix} (\text{ for } k = 2 \text{ to } 5 \text{ step } 1 ) \\ [mu] \begin{bmatrix} (\text{ for } k = 2 \text{ to } 5 \text{ step } 1 ) \\ [mu] \begin{bmatrix} (\text{ for } k = 2 \text{ to } 5 \text{ step } 1 ) \\ [mu] \begin{bmatrix} (\text{ for } k = 2 \text{ to } 5 \text{ step } 1 ) \\ [mu] \begin{bmatrix} (\text{ for } k = 2 \text{ to } 5 \text{ step } 1 ) \\ [mu] \begin{bmatrix} (\text{ for } m = 1 \text{ to } 7 \text{ step } 1 ) \\ [mu] a_m = \boxed{B} \overline{p} 9 \beta_{k,m+1} \\ [mu] \overline{p} 9 \beta \overrightarrow{k} \overrightarrow{m} 2 m_{k,3} = \text{var}(a) \end{bmatrix} \begin{bmatrix} (\text{ for } k = 2 \text{ to } 5 \text{ step } 1 ) \\ [mu] \begin{bmatrix} (\text{ for } m = 1 \text{ to } 7 \text{ step } 1 ) \\ [mu] a_m = \boxed{B} \overline{p} 9 \beta_{k,m+1} \\ [mu] \overline{p} \overline{p} 9 \beta \overrightarrow{k} \overrightarrow{m} 2 m_{k,3} = \text{var}(a) \end{bmatrix} \begin{bmatrix} (\text{ for } m = 1 \text{ to } 7 \text{ step } 1 ) \\ [mu] a_m = \boxed{B} \overline{p} 9 \beta_{k,m+1} \\ [mu] \overline{p} \overline{p} 9 \beta \overrightarrow{k} \overrightarrow{m} 2 m_{k,4} = \text{stdevp}(a) \end{bmatrix}
```


今回の例はカルキングをExcelのVBA的に利用した例です。 VBAとは全く操作イメージが異なりますが遙かに直感的です。 またスクリプト中でExcelリンクコマンドを使用できるので、多様な用途に対応できます。